翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Phase transfer function : ウィキペディア英語版
Optical transfer function

The optical transfer function (OTF) is a complex transfer function where the modulus of the function describe the modulation transfer and the argument of the function describe the phase transfer in an optical system, such as a camera, microscope, human eye, or projector, as a function of spatial frequency. It is used by optical engineers and scientists to describe how the optics project light from the object or scene onto a photographic film, detector array, retina, screen or simply the next item in the transmission chain. The function specifies the translation and contrast reduction of a periodic sine pattern after passing through the lens system, as a function of its periodicity and orientation. Formally, the optical transfer function is defined as the Fourier transform of the point spread function, or impulse response of the optics, i.e. the image of a point source. When this image does not change shape upon lateral translation of the point source, the optical transfer function can be used to study the projection of arbitrary objects or scenes onto the detector or film. While figures of merit such as contrast, sensitivity, and resolution give an intuitive indication of performance, the optical transfer function provides a comprehensive and well-defined characterization of optical systems.
== Definition and related concepts ==
Since the optical transfer function (OTF) is defined as the Fourier transform of the point-spread function (PSF), it is generally speaking a complex valued function. The projection of a specific periodic pattern is represented by a complex number with absolute value and complex argument proportional to the relative contrast and translation of the projected projection, respectively.
Often the contrast reduction is of most interest and the pattern translation can be ignored. The relative contrast is given by the absolute value of the optical transfer function, a function commonly referred to as the modulation transfer function (MTF). On the other hand, when also the pattern translation is important, the complex argument of the optical transfer function can be depicted as a second real-valued function, commonly referred to as the phase transfer function (PhTF). The complex-valued optical transfer function can be seen as a combination of these two real-valued functions:
:\mathrm(\nu)=\mathrm(\nu)e^
where
:\mathrm(\nu) = \left\vert \mathrm(\nu) \right\vert
:\mathrm(\nu) = \mathrm(\mathrm(\nu)),
and \mathrm(\cdot) represents the complex argument function, while \nu is the spatial frequency of the periodic pattern. In general \nu is a vector with a spatial frequency for each dimension, i.e. it indicates also the direction of the periodic pattern.
The impulse response of a well-focused optical system is a three-dimensional intensity distribution with a maximum at the focal plane, and could thus be measured by recording a stack of images while displacing the detector axially. By consequence, the three-dimensional optical transfer function can be defined as the three-dimensional Fourier transform of the impulse response. Although typically only a one-dimensional, or sometimes a two-dimensional section is used, the three-dimensional optical transfer function can improve the understanding of microscopes such as the structured illumination microscope.
True to the definition of transfer function, \mathrm(0)=\mathrm(0) should indicate the fraction of light that was detected from the point source object. However, typically the contrast relative to the total amount of detected light is most important. It is thus common practice to normalize the optical transfer function to the detected intensity, hence \mathrm(0)\equiv 1.
Generally, the optical transfer function depends on factors such as the spectrum and polarization of the emitted light and the position of the point source. E.g. the image contrast and resolution are typically optimal at the center of the image, and deteriorate toward the edges of the field-of-view. When significant variation occurs, the optical transfer function may be calculated for a set of representative positions or colors.
Sometimes it is more practical to define the transfer functions based on a binary black-white stripe pattern. The transfer function for an equal-width black-white periodic pattern is referred to as the Contrast Transfer Function (CTF).〔(【引用サイトリンク】url=http://www.microscopyu.com/articles/optics/mtfintro.html )

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Optical transfer function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.